Principal pivot transforms: properties and applicationsø

نویسندگان

  • Michael J. Tsatsomeros
  • H. Schneider
چکیده

The principal pivot transform (PPT) is a transformation of the matrix of a linear system tantamount to exchanging unknowns with the corresponding entries of the right-hand side of the system. The notion of the PPT is encountered in mathematical programming, statistics and numerical analysis among other areas. The purpose of this paper is to draw attention to the main properties and uses of PPTs, make some new observations and motivate further applications of PPTs in matrix theory. Special consideration is given to PPTs of matrices whose principal minors are positive. © 2000 Elsevier Science Inc. All rights reserved. AMS classification: 15A06; 15A09; 15-02; 90C33; 65U05

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudo Schur complements, pseudo principal pivot transforms and their inheritance properties

Extensions of the Schur complement and the principal pivot transform, where the usual inverses are replaced by the Moore-Penrose inverse, are revisited. These are called the pseudo Schur complement and the pseudo principal pivot transform, respectively. First, a generalization of the characterization of a block matrix to be an M -matrix is extended to the nonnegativity of the Moore-Penrose inve...

متن کامل

Spectral Properties of Boolean Functions, Graphs and Graph States

Generalisations of the bent property of a Boolean function are presented, by proposing spectral analysis of the Boolean function with respect to a well-chosen set of local unitary transforms. Quadratic Boolean functions are related to simple graphs and it is shown that the orbit generated by some graph transforms can be found within the spectra of certain unitary transform sets. The flat spectr...

متن کامل

On the Inheritance of Some Complementarity Properties by Schur Complements

In this paper, we consider the Schur complement of a subtransformation of a linear transformation defined on the product of two finite dimensional real Hilbert spaces, and in particular, on two Euclidean Jordan algebras. We study complementarity properties of linear transformations that are inherited by principal subtransformations, principal pivot transformations, and Schur complements.

متن کامل

Parameterized Complexity: A Statistical Approach Combining Factorial Experiments with Principal Component Analysis

The new sort developed by Sundararajan and Chakarborty (2007), a modification of Quick sort that removes the interchanges, considers the first element of the array as pivot element. In this paper the pivot element taken is a randomly selected element of the array. The effect of binomial parameters are examined on the average sorting complexity using Principal Component Analysis approach. An att...

متن کامل

Measurement of Plain Weave Fabrics Density Using Fourier Transforms

Warp and weft spacing and its coefficient of variation affect the physical properties of fabrics such as fabric hand, frictional and mechanical properties. In this paper the weft and warp spacing and its coefficient of variation for plain weave is calculated using Fourier transforms. Different methods have been used in this work including autocorrelation function. First, two dimensional power s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000